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1. Introduction

The idea of dynamical supersymmetry breaking (DSB) [1] provides an elegant explanation

of the hierarchy problem. The earliest examples were given in [2, 3] and many more

examples have been constructed since (for a review see e.g. [4, 5]). Still it has long been

understood that models which exhibit stable DSB vacua are non-generic. Furthermore,

while various tools for constructing DSB models exist [6] there is no systematic classification

of such theories.

DSB models are the starting point for generating supersymmetry-breaking masses for

the Standard Model (SM) superpartners. The breaking is communicated to the visible

sector by either gravity, or gauge interactions (for a review see e.g. [7, 8]) and therefore

only soft breaking is felt in the visible sector. Most scenarios suffer from various problems.

For example, in gravity-mediated models, flavor changing contributions are not suppressed.

Minimal anomaly-mediation [9, 10] leads to tachyonic sleptons, and while this problem can

be solved, the solutions are typically fairly complicated.

Gauge mediated models, on the other hand, lead to viable soft masses, with no “hid-

den” assumptions [6, 11, 12]. Still, they are often deemed unattractive, since they involve

several tiers of messenger fields, including gauge singlets, to mediate the breaking from

the the DSB model to the standard model. Furthermore, the presence of the singlets of-

ten leads to new supersymmetric color-breaking minima (although the desired minimum

is usually cosmologically stable) [13, 14]. These aesthetic shortcomings have led people

to seek models of “direct gauge mediation”, in which the standard model gauge group is

embedded in the unbroken global symmetry of the DSB model [15 – 20]. While this avenue
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is indeed more compact, and does not generate new unwanted minima, it typically results

in Landau poles below the Planck scale. The reason is that, when the DSB model has a

large enough unbroken global symmetry to accommodate the standard model, one finds

too many new fields charged under the standard model gauge group.

Recently, these ideas regained a lot of attention [21 – 29], following the elegant work of

Intriligator, Seiberg and Shih (ISS) [30]. As ISS show, by abandoning the requirement of

global supersymmetry breaking and allowing for meta-stable DSB vacua, one finds many

more simple and generic calculable models. In particular, ISS study supersymmetric QCD

(SQCD) with N colors and N < Nf < 3N/2 flavors, demonstrating that a meta-stable DSB

vacuum is present near the origin of field space. The analysis strongly relies on weak-strong

Seiberg duality [31] which provides a weakly coupled description of the theory.

These constructions open new avenues for model building. In particular, near the

origin of field-space the global symmetry is large enough to allow for embedding the SM

and therefore for new models of direct mediation. Nevertheless, such models still suffer

from Landau poles unless the supersymmetry breaking scale is pushed to sufficiently large

scales [26, 27, 30]. Such models therefore turn out to be rather complicated.

ISS also consider the particularly interesting case of SQCD with N colors and Nf = N

flavors. At low energy the theory is described by a non-linear sigma model with a quantum-

deformed moduli space. Since these quantum corrections do not allow all fields to be close to

the origin of moduli space, calculability is lost. Thus there is no weakly coupled description

of the model that allows for establishing a meta-stable DSB vacuum. Deforming the theory

(to Nf = N + 1) by adding another flavor restores control, and by doing so ISS conjecture

that a meta-stable minimum exists also in the Nf = N case.

The significance of this model lies in its minimal flavor symmetry. Gauging this sym-

metry potentially does not introduce Landau poles at low energy. Thus this model is

interesting for phenomenological purposes. Indeed, soon after the ISS discovery, the Pen-

tagon model [22, 32] was re-introduced, demonstrating a simple and attractive realization of

direct mediation. Aside from the usual gauge dynamics, the model contains a singlet which

plays an important role in obtaining a viable messenger spectrum, and which generates the

µ-term as well.

The importance of such models calls for further study of the meta-stable minima in

the Nf = N case. In this paper we reexamine this case and its deformations. As we

discuss at some length, the existence of a meta-stable minimum depends on the signs of

three non-calculable coefficients which appear in the Kähler potential. In the deformation

that ISS consider, these parameters are irrelevant by construction, so that the non-SUSY

minimum is calculable. We suggest another deformation which is closely related to the

Intriligator-Thomas-Izawa-Yanagida (ITIY) DSB model [33, 34]. As in the Nf = N + 1

deformation, there exists a region of parameter space where the theory is calculable and

the ISS-like extremum (which coincides with the conjectured minimum as we approach

Nf = N SQCD) is found to be a saddle point rather than a minimum. This demonstrates

the weakness of the conjecture, implying that the Nf = N extremum is just as likely to be

a saddle-point.

One approach towards settling this issue is to take advantage of the AdS/CFT cor-
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respondence. In [35] the Nf = N model was realized on fractional branes placed on a

Z2 orbifold of the conifold. A gravity dual was suggested and found to posses a non-

supersymmetric state, indicating that the conjectured meta-stable minimum indeed exists.

While clearly a step in the right direction, a complete gravity solution is still missing and

more importantly, it is not clear whether such non-supersymmetric states remain in the

transition between large ’t Hooft and weak gauge coupling. We believe further work is

needed in this regard.

The appearance of a saddle-point is directly related to the introduction of new gauge-

singlet degrees of freedom. Large couplings to the singlets may destabilize the desired

minimum. It is therefore natural to question the validity of direct-mediation models which

take advantage of the Nf = N scenario, and in particular of the Pentagon model [32, 22].

Unlike the deformation discussed above, this model is non-calculable so one cannot reliably

establish the existence of a non-susy minimum with a viable messenger spectrum. Still, we

argue that for small quark masses, such a minimum requires a large meson-singlet coupling,

which would probably destabilize the minimum. Moreover, because of the large coupling,

even if a minimum exists, it is not directly related to the ISS conjectured minimum.

The paper is organized as follows. In section 2 we review the ISS Nf = N conjecture,

emphasizing the Nf = N + 1 deformation and its relation to the original theory. In

section 3 we consider a different deformation, in which the mesons and baryons are coupled

to singlet fields. We show that the ISS-like extremum is in fact a saddle-point in the region

of parameter space where the model is calculable. In section 4 we consider direct mediation

in the Pentagon model. Some details of the calculation are given in the appendix.

2. The ISS conjecture

We begin this section with a quick review of the ISS supersymmetry-breaking minima for

SU(N) SQCD with N + 1 < Nf ≤ 3N/2 [30]. For this range of Nf , the IR theory can

be described by the weakly coupled “magnetic” theory, with Nf − N colors and with the

superpotential

W = TrmQM +
1

Λ̂
TrqMq̄ . (2.1)

Here M corresponds to the meson of the original, “electric” theory, q, q̄, are the mag-

netic quarks, and mQ is the (electric) quark mass. The scale Λ̂ is related to the strong

coupling scales of the electric and magnetic theories. The superpotential also contains

non-renormalizable terms generated by non-perturbative effects. These are essential for

seeing the supersymmetric minima, but are negligible close to the origin. The potential is

minimized at

M = 0, q = −q̄ =

(
q0

0

)
, q2

0 = mQ Λ̂1Nf−N , (2.2)

where M is an Nf × Nf matrix and q, q̄ are (Nf − N) × Nf . At the minimum, the F -

terms for some M ’s are nonzero and supersymmetry is broken. Some of the dual quarks
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and mesons get mass at tree-level, through the cubic term of the superpotential (2.1).

This cubic interaction also generates masses at the loop level for the remaining massless

scalars (apart from the Goldstone bosons). For small mQ, these masses are parametrically

larger than contributions from non-calculable corrections to the Kähler potential. Thus,

the theory near the origin is calculable by virtue of two important ingredients: (i) the

smallness of mQ, and (ii) the cubic superpotential interaction, which generates positive

masses for all the scalar fields. This second ingredient is missing for Nf = N .

Let us consider then Nf = N . At low energy, the theory is described by a non-linear

sigma model with the superpotential [36]

W = mQTrM + A(detM − BB̄ − Λ2N ) . (2.3)

Here for simplicity, we take the quark masses to be mQij = mQδij . The non-dynamical

auxiliary field A is introduced to enforce the quantum constraint. The theory has N

supersymmetric minima at

Mij = Λ2 (det mQ)1/N

mQ
δij , B = B̄ = 0. (2.4)

As a first attempt at finding a non-supersymmetric minimum we extremize the potential on

the baryonic branch, assuming a canonical Kähler potential. One finds a classical moduli

space of solutions with A = 0 and non-vanishing baryon number. We concentrate on the

point with the largest flavor symmetry,

M = 0, B = −B̄ = ΛN . (2.5)

The discussion below can be carried over to any other extrema. Around (2.5), only B− ≡
(B − B̄)/

√
2 is massive due to the quantum constraint. The combination B+ ≡ (B +

B̄)/
√

2,1 as well as all the mesons, remain massless: there is no superpotential coupling

that can generate masses for these fields. In order to discover the nature of this extremum,

one must therefore take into account corrections to the Kähler potential. The only non-zero

F -term is the meson F -term, FM , so the relevant quantity is the M − M † entry of the

inverse Kähler metric. The Kähler potential is of the form

K =
TrM †M

Λ2
+

(B+ + B†
+)2

Λ2N−2
+c1

TrM †MM †M

Λ4
+c2

(TrM †M)
2

Λ4
+c3

(B+ + B†
+)

2
TrM †M

Λ2N+2
+· · · .

(2.6)

Here c1, c2 and c3 are order-one parameters,2 and the ellipses stand for terms which

are irrelevant for our discussion. The form of (2.6) follows from the flavor, baryon

and non-anomalous Z2N axial symmetries. The last three terms in (2.6) are small for

M/Λ2, B+/ΛN ≪ 1. However, they are the only source of meson and B+ masses. Indeed,

1Strictly speaking, the dynamical field is not B+ but rather b where B = ΛNeb, B = −ΛNe−b [30]. Still

we will find it more convenient to work with B+. The two parametrizations coincide to quadratic order.
2For simplicity, we ignore order-one coefficients in front of the leading terms in the Kähler potential.

Thus one should not confuse the above parametrization with the one of [30].
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the potential takes the form,

V ∼
(

1 + α
TrM †M

Λ4
+ β̃

TrMTrM †

Λ4
+ γ

(B+ + B†
+)2

Λ2N

)
|mQΛ|2 + . . . , (2.7)

where the coefficients α, β̃, and γ depend on c1, c2 and c3. Therefore the above corrections

contribute order |mQ|2 ≪ Λ2 to the masses-squared of the canonically-normalized meson

and baryon. In order for this extremum to be a minimum, we must have

α > 0 , β ≡ α/N + β̃ > 0 , γ > 0 . (2.8)

However, as ISS discuss, the theory is strongly coupled at the scale Λ, and so α, β and γ

are non-calculable. At the field theory level one can therefore only conjecture the existence

of a supersymmetry-breaking minimum near the origin. Moreover, studying other minima

far away from the origin at M/Λ ∼ 1 requires the knowledge of higher order terms in the

Kähler potential.

To make further progress, ISS deformed the theory by adding another flavor. This is

the Nf = N + 1 case which we now discuss. To understand this deformation, one must

carefully follow the corrections to the Kähler potential, as the mass of the extra flavor is

dialed. To be concrete, let us take mQij = diag(mQ, ..,mQ,mN+1) with mN+1 ≥ mQ. At

low energy, this theory too is described by a non-linear sigma model in terms of the baryons

and mesons [36]. The superpotential is identical to the superpotential of the Nf > N + 1

magnetic theory with the dual quarks replaced by the baryons [36],

W =
1

Λ̂2N−1

(
B̂M̂ ̂̄B − det M̂

)
+ TrmQM̂. (2.9)

Here B̂ and ̂̄B are the N + 1 baryons, M̂ are the mesons of the deformed theory and Λ̂

is the scale at which the theory becomes strongly coupled. Unlike in the discussion of

the magnetic theory at the beginning of this section, here we chose to display the non-

renormalizable term det M̂ since it is important for recovering the Nf = N superpotential.

Still, as before, this term will play no role in the analysis near the origin.

To make contact with the Nf = N theory, it is convenient to write the Nf = N + 1

(hatted) fields as

M̂ =

(
M j

i M̂N+1
i

M̂ j
N+1 MN+1

N+1

)
, (2.10)

B̂ = (Bi, B) ̂̄B = (B̄i, B̄) . (2.11)

As mN+1 → ∞, the heavy flavor can be integrated out, leaving only M , B and B̄ light.

In this limit, the theory reduces to the original Nf = N case with the identification

A = MN+1
N+1 /Λ̂2N−1 and Λ2N = mN+1Λ̂

2N−1. Indeed, for constant Λ, the limit mN+1 → ∞
corresponds to Λ̂ → 0 which sets the kinetic term of A to zero making it non-dynamical.

For finite mN+1 however, MN+1
N+1 must be treated as a dynamical field. As before,

one may try to minimize the tree-level potential first, ignoring corrections to the Kähler
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potential. The analysis is identical to the the analysis of the Nf > N + 1 theory, only now

one quark mass is different. Again, we concentrate on the extremum,

M̂ = 0, Bi = B̄i = 0, B = −B̄ = ΛN , (2.12)

just as for Nf = N . But as opposed to the Nf = N theory, the superpotential (2.9)

contains a cubic term. At tree level, this term generates a mass-squared of order mN+1Λ̂

for all fields apart from M and B+ ≡ (B + B̄)/
√

2. The latter, just as for the case of more

flavors, become massive at the one loop level, with masses of order m2
QΛ̂/mN+1. To see

this, note that the only fields with non-zero F -terms are M i
i (i ≤ N), with F ∼ mQΛ̂.

As a result, the fields Bi and B̄i have supersymmetric masses-squared of order mN+1Λ̂,

and supersymmetry-breaking masses-squared of order mQΛ̂. These fields then generate a

non-zero supertrace, leading to masses for M and B+,

m2
loop ∼ 1

16π2

m2
QΛ̂

mN+1
. (2.13)

This is the crucial difference between the original Nf = N model and the deformation: in

the deformed theory, just as for larger values of Nf , all scalars apart from the Goldstones

get masses either at tree-level or at one-loop, and the pseudo-flat directions are (at least

naively) lifted, giving a minimum at (2.12).

However, on top of these mass terms, one must still consider the corrections to the

Kähler potential. As in eq. (2.7), these contribute δm2 ∼ m2
Q and are therefore negligible

compared with (2.13) as long as mN+1 ≪ Λ̂. Thus for sufficiently small mN+1, we can

reliably establish a true minimum. On the other hand, for mN+1 ≥ Λ̂, the signs of the

coefficients α, β and γ of eqs. (2.7), (2.8) (with Λ replaced by Λ̂) are crucial.

Let us therefore summarize the essence of the ISS conjecture. Whether the point (2.5)

is a minimum or not depends on the signs of unknown parameters, α, β and γ. One can

deform the theory by adding tree-level couplings which stabilize the above extremum by

generating positive masses-squared for all fields. The deformation can be worked out in a

limit where the above parameters are not important and can be neglected.

Clearly, the deformation gives us no information on α, β and γ. It is therefore just

as likely that one or more of the mesons and baryons is tachyonic. Physically this would

amount to a smooth transition in the potential as the minimum becomes a saddle-point

when mN+1 crosses Λ̂ from below. To emphasize this point, we now consider a different

deformation of the Nf = N theory, with the mesons and baryons coupled to singlet fields.

As we will see, when the deformed theory is calculable, the extremum (2.5) turns out to be

a saddle point, demonstrating that such a transition indeed occurs. We therefore conclude

that no information can be extracted on the nature of the Nf = N supersymmetry-breaking

extremum by deforming the theory.

3. Adding singlets

We now deform the ISS model by adding singlet fields Sij , T and T̄ with superpotential

– 6 –
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couplings to the mesons and baryons,

W = mQTrM + λTrSM + κ(TB + T̄ B̄) +
1

2
mSTrS2 +

1

2
mT (T 2 + T̄ 2) . (3.1)

This is nothing but the Intriligator-Thomas-Izawa-Yanagida model (ITIY) [33, 34], with

singlet mass terms added. Without these mass terms, the quark masses can be absorbed

by a shift redefinition of the singlets Sij.

As we will see below, the model has a local non-supersymmetric extremum similar to

the minimum conjectured by ISS. As the singlets decouple, the model approaches Nf = N

SQCD, and the local supersymmetry-breaking extremum approaches the ISS-conjectured

minimum (2.5). We can decouple the singlets either by decreasing their superpotential

couplings to the mesons and baryons, or by increasing their masses,

λ → 0 or mS → ∞ ; κ → 0 or mT → ∞ . (3.2)

However, as we will see below, there is a lower bound on the couplings λ, κ, and equivalently,

an upper bound on the masses mT , mS. For very small couplings (or very large masses),

non-calculable Kähler corrections become important and we cannot reliably study the ISS-

like extremum, much like in the Nf = N + 1 deformation. Still, as long as the model is

calculable, we will find that this extremum is a saddle point rather than a minimum.

3.1 Supersymmetric minima

Before going on, it is useful to recall what happens in the ITIY model. The classical

superpotential of the model is given by (3.1) with mS and mT set to zero. Supersymmetry is

then broken, since the singlet F -terms only vanish when the mesons and baryons are at the

origin, in conflict with the quantum-modified constraint. Defining again T± = (T ± T̄ )/
√

2,

one finds that at tree-level, T− is a flat direction. This degeneracy is lifted at the loop-

level, and as argued in [37], the loop corrections can be reliably computed near the origin.

Indeed these loop corrections are generated by light states, and scale as O(κ4), while non-

calculable corrections from states at the scale Λ are suppressed by O(κ6) [37]. Thus for

sufficiently small κ, all fields are stabilized at the origin, apart from B− =
√

2ΛN . Since

the only nonzero F -term is FT− , the Goldstino is the T− fermion.

As discussed above, here we add singlet mass terms. As these masses are turned

on, supersymmetric vacua move in from infinity, and the theory can only have local

supersymmetry-breaking minima at best. Taking into account the quantum-modified con-

straint,

WNP = A
(
det M − BB̄ − Λ2N

)
, (3.3)

one finds three families of supersymmetric solutions. The first is given by

B± = T± = 0 , |M | = Λ2 , |S| = − λ

mS
Λ2 . (3.4)

The second is given by, up to terms of order λ2,

B+ = T+ = 0 , M ≃ −
(mQmT

κ2

)1/(N−1)
, S ≃ λ

mS

(mQmT

κ2

)1/(N−1)
,

B2
− = − detM + Λ2N , T− = − κ

mT
B− , (3.5)
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and the third solution is obtained from the second for B2
+ ↔ −B2

−, T+ ↔ T−, and M →
−M , S → −S. Clearly, in the decoupling limit (3.2), only the first solution remains at

a finite distance from the origin. The other two solutions approach the classical solutions

with the meson VEVs running to infinity.

3.2 Non-supersymmetric saddle points

We are now ready to look for the ISS conjectured minimum. For now, we will assume

that the Kähler potential is canonical in all fields. We will later examine the region of

validity of this approximation. Strictly speaking, around a given solution we should use

the constraint to eliminate the heavy degree of freedom, say B−, and derive the potential for

the remaining degrees of freedom. In the process, various non-renormalizable interactions

of the remaining fields will be induced, making the potential quite unwieldy. We will

therefore first perform the analysis with the Lagrange multiplier in place, and later explain

how the results are modified in the full analysis (this analysis is described in detail in the

appendix).

It is simple to verify that at the minimum, the F -terms of B±, T± and A all vanish,

resulting in two possible solutions at,3

B± = T± = 0 , A = ± κ2

mT
, B2

∓ = ∓2(det M − Λ2N ) , T∓ = − κ

mT
B∓ .(3.6)

Since we are interested in extrema which preserve the SU(N)diag global symmetry, we take

the ansatz,

Mij = M δij , Sij = S δij . (3.7)

One therefore obtains an effective potential for M and S,

V = N

∣∣∣∣λS + mQ ± κ2

mT
MN−1

∣∣∣∣
2

+ N |λM + mS|2 . (3.8)

with a non-supersymmetric extremum at,

M =

(
± λ2

(N − 1)mS

mT

κ2

) 1

N−2

, (3.9)

S = − λ∗

|λΛ|2 + |mS|2

[
mQΛ2 +

(
± λ2

(N − 1)mS

mT

κ2

) 1

N−2
(

λ

λ∗
m∗

S +
λ2Λ2

(N − 1)mS

)]
.

We now wish to relate the above solutions to the ISS extremum. We therefore consider

the case A > 0. To this end, one may take the decoupling limit, (3.2), in various ways

thereby probing the space of vacua in the original Nf = N SQCD. To discover the nature

of the extrema, one then needs to compute the mass spectrum for each given decoupling

3There is another uninteresting solution with B+ = B− = T+ = T− = 0. This solution is on the mesonic

branch and is not related to the ISS conjecture.
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limit. In particular, to approach the ISS extremum, the singlets S should decouple faster

than T±, for example by taking

λ, κ → 0 ,
λ

κ
→ 0 . (3.10)

The only nonzero F -terms at this extremum are FM and FS , with FM ∼ mQ for small λ.

Thus the Goldstino is a mixture of the M and S fermions, and it tends to the mesino when

λ → 0, as expected for the ISS minimum.

We can now analyze the nature of this extremum. To leading order in λ, the (S,M)

mass-squared matrix takes the simple form,

m2
bosons = N




|λΛ|2 λ∗ΛmS ξSB 0

λm∗
SΛ |mS |2 0 0

ξ∗SB 0 |λΛ|2 λΛm∗
S

0 0 λ∗mSΛ |mS |2


 , (3.11)

where

ξSB ≃ (N − 1)(N − 2)
κ2

mT

(
λ2

(N − 1)mS

mT

κ2

)N−3

N−2

m∗
Q Λ4 , (3.12)

is the supersymmetry-breaking contribution. The determinant of the matrix above is neg-

ative, so there is at least one tachyonic direction. In fact it is easy to see that there is

precisely one such direction. Note that the determinant of the diagonal 2× 2 block, which

coincides with the fermion mass matrix, is exactly zero, signalling the presence of the

Goldstino. The S and M fermions mix to give one massive state, which is predominantly

S of mass near mS , and one massless fermion, the Goldstino, which is mostly M . The

supersymmetry-breaking contribution ξSB results in splittings between the fermions and

scalars. For small λ, this splitting occurs mostly in the M sector. Since however the su-

pertrace still vanishes (we are working at tree-level) one scalar becomes lighter than the

Goldstino, with a tachyonic mass m2 ∼ −|ξSB|.
As we saw in section 2, the meson masses also receive contributions from non-calculable

Kähler terms, which are of order |FM |2/Λ2 ∼ m2
Q [see eq. (2.7)].4 For the model to be

calculable, these contributions must be smaller than the smallest eigenvalue of the mass-

matrix (3.11),

ξSB ≫ m2
Q . (3.13)

One can choose, for example (for large N),

mQ ≪ λΛ ≪ mS . Λ . (3.14)

A similar bound holds in the baryonic sector for κ2/mT . Thus we see that we cannot

decouple the singlets completely while preserving the calculability of the model. There is a

4In fact, due to the new interactions with the singlets, there are additional non-calculable contributions

to the Kähler potential which are negligible for small λ, κ.
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Figure 1: The two deformations of Nf = N SQCD. The transition between a saddle point and a

minimum occurs in the shaded region where calculability is lost.

lower bound on the coupling λ, or, alternatively an upper bound on the mass mS . Outside

the allowed range, the signs of the parameters α, β and γ become crucial for establishing

a minimum. In this regard the above deformation is on exactly the same footing as the

deformation considered by ISS. This situation is depicted in figure 1.

As we noted above, so far we worked with the Lagrange multiplier for simplicity. In

the appendix we present a more careful analysis, where we eliminate one of the fields using

the constraint from the start. Indeed, the location of the extremum (3.6), (3.9), and the

mass-squared matrix (3.11) are corrected by small amounts, but the conclusion remains

unchanged.

One could still hope that the instability we found might be cured by positive contribu-

tions arising from the Coleman-Weinberg (CW) potential. The situation is different from

the Nf ≥ N + 1 case. As we reviewed in the previous section, for Nf = N + 1 there are

pseudo-flat directions which are lifted by the dominant, calculable one-loop corrections. In

our case on the other hand, there are no such flat directions at tree level. Furthermore, the

one-loop contributions are smaller than the tree-level ones. Note that the only contribution

to the CW potential is from the fields M and S, since the masses of the remaining fields

are approximately supersymmetric. Thus the CW potential is roughly

∆V =
1

64π2
StrM4 log

M2

Λ2
∝ 1

64π2
ξ2
SB . (3.15)

This correction is one loop-suppressed compared with the tree-level contribution to the

tachyonic mass and thus cannot stabilize the extremum.

Finally, one could ask whether the CW potential can generate a distinct minimum

which coincides with the ISS minimum in the decoupling limit. While a minimum is indeed

generated for sufficiently small singlet mass mS , in the decoupling limit this minimum is
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infinitely far in field space from the ISS and supersymmetric minima. The simplest way to

see this, is to consider the one loop correction to the Kähler potential for S,

δK ∼ − N

32π2
|λS + mQ|2 log

|λS + mQ|2
Λ2

. (3.16)

Therefore for sufficiently small mass, mS , a local minimum is generated at S ∼ −mQ/λ.

In the decoupling limit this minimum is driven to infinity. Hence, it cannot correspond to

the ISS conjectured minimum.

4. Direct mediation with singlets?

As discussed in the introduction, one of the main virtues of the ISS supersymmetry-breaking

minima is that many fields are at the origin. There is thus a large unbroken global sym-

metry, which makes these theories promising starting points for models of direct gauge

mediation [15 – 20]. In particular, the most compact model which potentially does not

lead to Landau poles for the standard model couplings at low energy is the Nf = N

case. Recently such a model has been proposed, taking advantage of the conjectured min-

imum in Nf = N SQCD [22].5 The model is based on the specific case of Nf = N = 5

(and hence dubbed the “Pentagon model”), with the SM gauge group embedded in the

SU(5)diag global symmetry. One gauge singlet, S, is added to the model, in order to gen-

erate the µ-term through the superpotential coupling SHuHd. S obtains a VEV of order

the supersymmetry-breaking F -terms, which are chosen to be O(100GeV) thus solving the

µ-problem. In fact, the use of singlets is common for solving this problem in models of

direct mediation (see, e.g. [12]). As we will discuss, this singlet also plays an important

role in generating a viable messenger spectrum.

In the previous section we showed that in the presence of large singlet couplings, the

ISS extremum at M = 0 may be destabilized. It is therefore natural to ask whether the

same is true for the Pentagon model. While the model is non-calculable, we will argue that

for small quark masses, the singlet coupling must be sufficiently large in order to avoid

negative contributions to the MSSM scalars. Therefore, destabilization is likely to occur.

To see first that non-calculable corrections are crucial in this setup, let us briefly review

the model. The model has just one gauge singlet S. The relevant part of the superpotential

is,

W = mQTrM + λSTrY M +
1

6
gS3 + A

(
det M − B2

+

2
+

B2
−

2
− Λ10

)
(4.1)

Here Yij is the hypercharge generator, normalized to be Yij = diag(1, 1, 1,−3/2,−3/2).

As before, it is straightforward to check that near the origin of the mesonic direction, the

potential is extremized at Mij = 0 for i 6= j. Furthermore, given the (SU(3) × SU(2))diag

symmetry, the ansatz we are seeking is of the form,

Mij = Mdδij + MY Yij . (4.2)

5In fact, an earlier version of the model [32], which is not based on the ISS minimum, involves a meta-

stable supersymmetry-breaking minimum in the context of “Cosmological Supersymmetry Breaking” [38].
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Ignoring first higher order terms in the Kähler potential, the potential is extremized along

the baryonic branch at S = MY = 0, with A = 0 and Md undetermined.

Near the origin, higher order Kähler terms will generate supersymmetry-breaking

masses-squared of order F 2
Md

∼ m2
Q for the mesons, just as in eq. (2.7). They will also

shift A from zero, so that A ∝ FMd
. This in turn will generate masses from the A detM

term in the superpotential, for both the fermion and scalar mesons. Clearly however, as

long as the mesons are close to the origin, these tree-level contributions cannot dominate

over the Kähler contributions. For small λ, the existence of a minimum therefore depends

on the signs of the parameters α, β and γ.

Imagine then that λ is small, and that α, β and γ are such that a minimum is generated.

As we discussed above, the SM gauge group is embedded in the SU(5)diag flavor symmetry.

Below Λ, the messengers of gauge mediation are therefore the mesons. These get Dirac

masses from two sources. The first is the A detM term discussed above, and the second

is higher-dimension Kähler terms, such as the third and fourth terms of eqn (2.6). Both

contributions are proportional to mQ and some positive power of λ. In addition, the scalar

mesons have supersymmetry-breaking masses of order mQ. For small λ, the messenger

supertrace is therefore positive. Furthermore, for λ ≪ 1 and mQ ≪ Λ, there is some region

of energies in which the messengers are weakly coupled. The positive supertrace then

generates a negative contribution to the masses of MSSM scalars [39]. This contribution

arises at one-loop, and is logarithmically enhanced as log(ΛUV /mF ), where ΛUV is the

appropriate cutoff, and mF is the messenger scale. In the case at hand, ΛUV ∼ Λ, where the

positive supertrace is canceled by additional strongly-interacting fields charged under the

SM gauge group. Of course close to Λ the theory becomes strongly interacting, and there

will be non-calculable corrections to the soft masses. Nonetheless, for a large enough scale

separation the negative contribution would win because of the logarithmic enhancement.

We conclude that the coupling λ cannot be too small. For λ of order one, the minimum

would probably be destabilized, much like we found in section 3. In any case, such a large

coupling drives the mesons to VEVs of order Λ2. Thus Kähler corrections are important

to all orders, and the minimum required for the Pentagon no longer depends merely on α,

β and γ. It is therefore not directly related to the ISS conjecture.

Finally, note that we assumed here mQ ≪ Λ. In this regime, the ISS analysis for

Nf > N is reliable, and the lifetime of the minimum is parametrically enhanced. In [22],

mQ is taken to be of order Λ, and the spectrum cannot be reliably computed.

5. Conclusions

ISS conjecture a DSB minimum for Nf = N SQCD. They reach this conclusion by deform-

ing the theory with an additional flavor. The importance of this conjecture lies in its appeal

for model building and in particular for constructing models of direct mediation which do

not suffer from Landau poles at low energy. In this paper we revisited this conjecture. We

argued that deforming the theory gives, by construction, no information on the existence

of such a minimum and therefore there is no evidence for a DSB vacuum. In particular,
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the existence of this state depends on the signs of three non-calculable parameters in the

Kähler potential.

To demonstrate our point, we studied another deformation by coupling singlets to the

mesons and baryons of the theory. For sufficiently large couplings the theory is calculable

close to the origin. As we showed, the would-be ISS minimum is destabilized by the presence

of the singlets and becomes a saddle point. Two conclusions are to be inferred from this

deformation: (i) As we dial couplings, a minimum in one theory becomes a saddle point in

another. This transition occurs in a region where the theory is non-calculable. This is in

accord with our claim that no information can be extracted on the existence of a minimum

in the original theory. (ii) Coupling singlets to such gauge theories can quite generically

destabilize existing minima.

Given the latter conclusion we briefly discussed direct mediation based on Nf = N

SQCD, assuming that a minimum does exist. An example of such a model is the Pentagon

model presented in [22]. We argued that the coupling to the singlet cannot be too small

in this case. On the other hand, a large coupling would drive the mesons far from the

origin where both the tree-level and non-calculable corrections are important. Thus while

likely, one cannot conclude whether similar destabilization occurs in this model. Still the

existence of the minimum depends on the complete structure of the Kähler potential and

is unrelated to the original ISS minimum at the origin.
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A. The ISS-like extremum: full analysis

In 3.2 we presented a somewhat simplified analysis of the Nf = N theory coupled to

singlets, keeping the Lagrange multiplier in the theory and treating it on equal footing

with the other fields. Here we will refine this analysis, and impose the constraint right

away to eliminate the heavy field B−, whose mass is of order Λ. For convenience, we will

set Λ = 1, such that all fields are dimensionless. The quantum modified constraint then

gives

B− =
√

2 − 2MN + B2
+ . (A.1)
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Using the parametrization (3.7) the superpotential is then

Weff = NλMS+κT+B++κT−

√
2 − 2MN +B2

++NmQM+
N

2
mSS2+

mT

2

(
T 2

+ + T 2
−

)
, (A.2)

The potential is extremized for

0 =
∂V

∂S
= NmSF ∗

S + NλF ∗
M (A.3)

0 =
∂V

∂M
= NλF ∗

S +
NκT−B+MN−1

B3
−

F ∗
B+

− NκMN−1

B−
F ∗

T−
− (A.4)

N(N − 1)κT−MN−2

B−
F ∗

M − N2κT−M2N−2

B3
−

F ∗
M

0 =
∂V

∂T−
= mT F ∗

T−
− NκMN−1

B−
F ∗

M +
κB+

B−
F ∗

B+
(A.5)

0 =
∂V

∂T+
= mT F ∗

T+
+ κF ∗

B+
(A.6)

0 =
∂V

∂B+
=

κT−

B−
F ∗

B+
− κT−B2

+

B3
−

F ∗
B+

+ κF ∗
T+

+ (A.7)

κB+

B−
F ∗

T−
+

NκT−B+MN−1

B3
−

F ∗
M

where we use B− to denote the combination (A.1) for convenience. The last two equations

hold if we choose

FT+
= FB+ = 0 , (A.8)

and therefore

B+ = T+ = 0 . (A.9)

Thus, B+ and T+ remain as in (3.6), and their F -terms still vanish. At tree level, there

are therefore no mass terms that mix the (B+, T+) sector with the (M,S) sector, just as

we found in section 3.2 However, a T− − M mixing is generated now.

Since it is difficult to solve the remaining equations exactly, we will study the theory

in the decoupling limit, as an expansion for small λ. It is convenient to choose mS and

mT of order one. In view of the discussion in section 3, we want λ to be smaller than κ.

To maintain calculability we also choose mQ ∼ λ2. We first note that FT shifts from zero

since otherwise eqn (A.5) isn’t satisfied. To solve this equation we take the ansatz

T− = − κ

mT
B− +

δT−

m2
T

(A.10)

which gives,

mT F ∗
T−

= δT ∗
− =

NκMN−1

B−
F ∗

M . (A.11)
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Furthermore, in the decoupling limit M is small (we will see below that it is of order λ
2

N−2 ),

so we can safely neglect terms of order
(
M2N

)
.6 Using the above, we find to leading order,

M ≃
(

λ2

mS

mT

κ2

1

(N − 1)

) 1

N−2

(A.12)

just as in eqn (3.9), and

S = − λ∗

|mS |2 + |λ|2
(

mQ +
λ

λ∗
m∗

SM − κT−MN−1

B−

)
≃ −λ∗mQ

|mS |2
− λ∗M

mS
(A.13)

It is easy to see that this coincides with the solution (3.9).

Having found the extremum, we can now calculate the bosonic mass-squared matrices.

As we mentioned above, at tree-level, there is no mixing between B+, T+ and the remaining

fields. The (B+, T+) mass matrix is

m2
BT =




|κ|2 + |κ|4

|mT |2
mT κ∗ − κ∗2κ

m∗
T

ξBT 0

m∗
T κ − κ2κ∗

mT
|κ|2 + |mT |2 0 0

ξ∗BT 0 |κ|2 + |κ|4

|mT |2
m∗

T κ − κ2κ∗

mT

0 0 mT κ∗ − κ∗2κ
m∗

T
|κ|2 + |mT |2




(A.14)

where

ξBT = δT−
NκMN−1

m2
T B3

−

F ∗
M ≪ ξSB (A.15)

As usual the diagonal blocks of this matrix are the mass matrices for the fermions. The

off-diagonal terms involve the supersymmetry breaking F -term, and are parametrically

small. In fact, they are smaller than the supersymmetry-breaking contributions in the

M,S sector, ξSB. Note that this remains true when non-calculable contributions of the

form (2.6) are taken into account. The latter induce susy-breaking masses for B+ which

are of order mQ and therefore larger than ξBT but smaller than ξSB. Clearly, all eigenvalues

of this matrix are positive and no instability develops here.

We now turn to the second sector which contains the fields M , S and T−. Calculating

the boson matrix, substituting (A.12), (A.13) for the VEVs and neglecting terms of order

M2N or higher we get

m
2
0 = N

2

0

B

B

B

B

B

B

B

B

B

B

B

@

|λ|2+
˛

˛

˛

λ2

mS

˛

˛

˛

2

+|Ω|2 m∗
Sλ+ λ∗λ2

mS
Ω∗ λ2

mS
+

m∗

T

N
Ω ξSB 0 m2

MT
−

mSλ∗+ λ∗2λ
m∗

S

|m|2+|λ|2 Ω∗λ 0 0 0

Ωλ∗2

m∗

S

+ mT

N
Ω∗ Ωλ∗ |mT |2

N2 +|Ω|2 m2
MT

−

0 0

ξSB 0 m∗2
MT

−

|λ|2+
˛

˛

˛

λ2

mS

˛

˛

˛

2

+|Ω|2 mSλ∗+ λλ∗2

m∗

S

Ωλ∗2

m∗

S

+ mT

N
Ω∗

0 0 0 m∗
Sλ+ λ2λ∗

mS
|m|2+|λ|2 Ωλ∗

m∗2
MT

−

0 0 Ω∗ λ2

mS
+

m∗

T

N
Ω Ω∗λ

|mT |2

N2 +|Ω|2

1

C

C

C

C

C

C

C

C

C

C

C

A

(A.16)

6For convenience we work here in a limit of large N .
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where ξSB is as in (3.12) and we defined

Ω ≡ 1

N

∂FM

∂T−
=

1

N

∂FT−

∂M
= −κMN−1

B−
, (A.17)

m2
MT−

≡
κm∗

Q(N − 1)MN−2

√
2

. (A.18)

Since we are looking for supersymmetry-breaking effects, we should carry out our calcula-

tions up to the order of the largest non-vanishing contribution in the off-diagonal block,

namely mMM ∼ O(λ4). Fortunately, the situation is simplified by noting that this sector

includes the Goldstino. Indeed the 3×3 blocks on the diagonal coincide with the fermionic

mass matrix and hence vanish. This is sufficient to show that the determinant of this

matrix is negative without keeping track of such small orders in λ. We thus get the same

instability as we had in section 3.

It is worth noting that any contribution from the CW potential would be proportional

to either ξSB or to ξBT . On the other hand, the tree-level tachyonic mass is proportional

to ξSB. Since ξBT < ξSB, the CW contribution cannot compete with the tree-level contri-

bution.
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